

Werkstoffrichtwerte Polyamid (PA) 6 G schwarz

Eigenschaften	Maßeinheit	Prüfmethode	Wert
Allgemeine Eigenschaften			
Dichte	g/cm³	DIN EN ISO 1183-1	1,15
Feuchtigkeitsaufnahme - Sättigungswert bei 23° / 50% RH	%	DIN EN ISO 62	2,5
Brennverhalten nach UL 94 (Dicke 3 mm/ 6 mm)		ISO 1210 (UL94)	HB/HB
Mechanische Eigenschaften		, ,	Probezustand "trocken"
Streckspannung Reißdehnung E-Modul (Zug) Kerbschlagzähigkeit (Charpy) Kugeldruckhärte Shore-Härte	Mpa % MPA KJ/m² N/mm² Skala D	DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 527 ISO 179/1eA/Pendel 1J DIN EN ISO 2039-1 DIN 53505	82 >35 3.500 >2,5 185 83
Thermische Eigenschaften			
Schmelztemperatur Wärmeleitfähigkeit Spezifische Wärmekapazität Linearer thermischer Ausdehnungskoeffizient Anwendungstemperatur – langfristig Anwendungstemperatur – kurzzeitig, maximal Wärmeformbeständigkeit, Methode A:1,8Mpa	°C W/(K x m) kJ/(kgK) 10° x K° °C °C °C	ISO 11357 DIN 52612 DIN 52612 Durchschn. Zw. 20°C-60°C	216 0,25 1,7 80 -40 bis 110 170 95
Elektrische Eigenschaften			
Dielektrizitätszahl, 50Hz Dielektrischer Verlustfaktor, 50 Hz Spezifischer Durchgangswiderstand Oberflächenwiderstand Vergleichzahl der Kriechwegbildung CTI, Prüfl. A Durchschlagfestigkeit	Ohm cm Ohm KV/mm	IEC 60250 IEC 60250 IEC 60093 IEC 60093 IEC 60112 IEC 60243	- - - - -

Anmerkung:

Für Polyamide gilt:

Durch Feuchtigkeitsaufnahme ändern sich die mechanischen Eigenschaften, das Material wird zäher und schlagfester, der E-Modul sinkt. Abhängig von der Umgebungsatmosphäre, der Temperatur und der Zeit für die Feuchtigkeitsaufnahme ist jedoch nur eine bestimmte Oberflächenschicht von den Eigenschaftsänderungen betroffen. Bei dickwandigen Teilen bleibt der Kernbereich unverändert. Die kurzzeitige maximale Einsatztemperatur gilt nur für Anwendungen mit sehr niedriger mechanischer Belastung über wenige Stunden. Die langfristige maximale Einsatztemperatur basiert auf der Wärmealterung der Kunststoffe durch Oxidation, die eine Abnahme der mechanischen Eigenschaften zur Folge hat. Angegeben sind die Temperaturen, die nach einer Zeit von mindestens 5.000 Stunden eine Abnahme der Zugfestigkeit (gemessen bei Raumtemperatur) um 50% im Vergleich zum Ausgangswert verursachen. Dieser Wert liefert keine Aussage zur mechanischen Festigkeit des Werkstoffes bei hohen Anwendungstemperaturen. Bei dickwandigen Teilen ist von der Oxidation bei hohen Temperaturen nur die Oberflächenschicht betroffen, die durch den Zusatz von Antioxidantien besser geschützt werden kann. Der Kernbereich der Teile bleibt in jedem Fall ungeschädigt.

Die minimale Einsatztemperatur wird maßgeblich bestimmt von einer möglichen Schlag- oder Stoßbelastung im Einsatz. Die angegebenen Werte beziehen sich auf geringe Schlagbeanspruchung. Die elektrischen Kennwerte wurden an naturfarbenem, trockenem Material gemessen. Bei anderen Einfärbungen (insbesondere schwarz) oder feuchtem Material kann es zu deutlichen Veränderungen der elektrischen Kennwerte kommen. Die angegebenen Werte wurden aus vielen Einzelmessungen als Durchschnittswerte ermittelt und entsprechen dem Stand unserer heutigen Kenntnisse. Sie dienen lediglich als Information über unsere Produkte und sollen eine Hilfe zur Materialauswahl sein. Wir sichern damit nicht bestimmte Eigenschaften oder die Eignung für bestimmte Einsatzzwecke rechtlich verbindlich zu. Da die Eigenschaften auch von den Dimensionen der Halbzeuge und dem Kristallisationsgrad (z.B. Nukleierung durch Pigmente) abhängen, können die tatsächlichen Eigenschaftswerte eines bestimmten Produkts von den Angaben etwas abweichen. * Die mechanischen Eigenschaften von faserverstärkten Materialien wurden an spritzgegossenen Probekörpern in Faserrichtung ermittelt. Für die Auslegung von Konstruktionen und die Definition von Materialspezifikationen nennen wir Ihnen auf Anfrage gerne die für Ihre Anwendung zutreffenden Daten.

Tel.: 0531 / 220 27-0

Fax: 0531 / 220 27-99